Pardi – avancement

Acadie

11 juillet 2017

Plan

2 Framework

Case Studies

Distributed Algorithms

- Two Phase Commit
- Chandy-Misra Mutual Exclusion
- Naimi-Tréhel Mutual Exclusion
- Token-based Mutual Exclusion
- Misra Termination
- Consensus

Workflow

- Examination Management System
- Shift Worker Scheduling

Shared Memory

- Splitter
- Renaming
- Linked List

Number of Variants

Problem	TLA ⁺	Cubicle	Workflow
	(& PlusCal)		
Two Phase Commit	2	3	
Consensus	10	-	
Chandy-Misra Mutual Exclusion	1	1	
Naimi-Tréhel Mutual Exclusion	4	1	
Misra Termination	3	-	
Token-based Mutual Exclusion	5	5	
Examination Management Sys.	1	3	2
Shift Worker Scheduling	_	-	1
Splitter	1	3	
Renaming	1	-	
Linked List	1	-	

Numerical Parameters

Number of Processes

- No knowledge necessary, except ∀site, ∃site, ∃j ≠ self (splitter, Naimi-Tréhel)
- Set operations (∈, ⊆) (Chandy-Misra, Two Phase Commit)
- Structural properties: *next(self)* (Misra Termination, token-based mutual exclusion)
- Explicit count (+1 and test = N) (Misra termination, synchronous consensus, renaming)

Numerical Parameters

Number of Failures

For instance, synchronous consensus:

site failure	constraint
none	ok
crash	f failures $< n$ processes
omission	f < n/2
byzantine	$f \leq \lfloor (n-1)/3 \rfloor$

Exchanged Values

(e.g. consensus) \rightarrow can be instantiated with a few distinct values (few = 2 usually)

Additional Parameters

k-consensus, with a relation to the number of failures and the number of processes (e.g. asynchronous communication and crash failure $\Rightarrow f < k < n$)

Functional Parameters

Network Topology

Mesh, Ring, spanning tree...

Process Failures

Crash failure, omission failure, byzantine failure. Dedicated algorithms \rightarrow not a parameter

Communication Parameters

- Multiplicity (point-to-point, multicast, broadcast)
- Synchronous / asynchronous (also computation model, e.g. by round)
- Failures (message loss, duplication, corruption)
- Delivery ordering (FIFO 1-1, causal...)

Results

Problem	TLA ⁺	Cubicle	Workflow
	(N max)		
Two Phase Commit	N=7	\sim OK	
Consensus	N=2 to 4	no model	
Chandy-Misra Mutual Exclusion	N=4	OK	
Naimi-Tréhel Mutual Exclusion	N=5	\sim OK	
Misra Termination	N=5	no model	
Token-based Mutual Exclusion	N=6	OK	
Examination Management Sys.	fixed	KO	collab. & chor.
Shift Worker Scheduling	no model	no model	collab.
Splitter	N=4	KO	
Renaming	N=3	no model	
Linked List	NP+NC=7	no model	

N max: for light TLC verification

Framework for Compatibility Checking

Modeling

- Asynchronously communicating peers
- Multi-senders multi-receivers channels
- Group of channels associated to different communication models

Method

- Peers and communication specified using transition systems
- Compatibility checking of LTL properties
- Modular (new models)
- Fully automatic
- Model checking: finite state systems
- TLA⁺

New Framework for Compatibility Checking

Two point-to-point channels, with fifo11 ordering, and at most two messages in transit on channel Request.

A communication action (send/receive) on a channel is enabled if it is enabled in all concerned models.

```
(Adam Shimi's Master thesis)
```

Sending & Receiving


```
(* sender, destination, channel, content *) \wedge ...
```


Case Studies

Case studies implemented in our framework:

- Chandy-Misra Mutual Exclusion
- Naimi-Tréhel Mutual Exclusion
- Consensus (asynchronous)
- Examination Management System
- \rightarrow easy tests and confirmations of the required ordering of delivery.

Limitations:

- One communication action per transition (no multiple sends, no receive-and-reply)
- Generic logical action vs ad-hoc implementation: ∃i, j ∈ Site : ∃d ∈ Data : COM!receive(i, j, "chan", d) ∧ ...
 LET m = Head(chan[i][j]) IN ...
 → same number of states/transitions but slower

Demonstration?

Demonstration? To be prepared...

And Now?

- Framework: Failure \rightarrow Initial work not satisfactory \rightarrow Heard-Of?
- Minimal parameters?
- Cubicle with weak variables = channels?
- Other workflow examples?